
CS 537 Notes, Section #3A: Entering and

Exiting the Kernel

User and Kernel Addresse Spaces

In a modern operating system, each user process runs in its own address space, and the kernel

operates in its protected space. At the processor level (machine code level), the main

distinction between the kernel and a user process is the ability to access certain resources

such as executing privileged instructions, reading or writing special registers, and accessing

certain memory locations.

The separation of user process from user process insures that each processes will not disturb

each other. The separation of user processes from the kernel insures that users processes will

not be able to arbitrarily modify the kernel or jump into its code. It is important that processes

cannot read the kernel's memory, and that it cannot directly call any function in the kernel.

Allowing such operations to occur would invalidate any protection that the kernel wants to

provide.

Operating systems provide a mechanism for selectively calling certain functions in the kernel.

These select functions are called kernel calls or system calls, and act as gateways into the

kernel. These gateways are carefully designed to provide safe functionality. They carefully

check their parameters and understand how to move data from a user process into the kernel

and back again. We will discuss this topic in more detail in the Memory Management section

of the course.

The Path In and Out of the Kernel

The only way to enter the operating kernel is to generate a processor interrupt. Note the

emphasis on the word "only". These interrupts come from several sources:

 I/O devices: When a device, such as a disk or network interface, completes its current

operation, it notifies the operating system by generating a processor interrupt.

 Clocks and timers: Processors have timers that can be periodic (interrupting on a

fixed interval) or count-down (set to complete at some specific time in the future).

Periodic timers are often used to trigger scheduling decisions. For either of these types

of timers, an interrupt is generated to get the operating system's attention.

 Exceptions: When an instruction performs an invalid operation, such as divide-by-

zero, invalid memory address, or floating point overflow, the processor can generate

an interrupt.

 Software Interrupts (Traps): Processors provide one or more instructions that will

cause the processor to generate an interrupt. These instructions often have a small

integer parameter. Trap instructions are most often used to implement system calls

and to be inserted into a process by a debugger to stop the process at a breakpoint.

The flow of control is as follows (and illustrated below):

1. The general path goes from the executing user process to the interrupt handler. This

step is like a forced function call, where the current PC and processor status are saved

on a stack.

2. The interrupt handler decides what type of interrupt was generated and calls the

appropriate kernel function to handle the interrupt.

3. The general run-time state of the process is saved (as on a context switch).

4. The kernel performs the appropriate operation for the system call. This step is the

"real" functionality; all the steps before and after this one are mechanisms to get here

from the user call and back again.

5. if the operation that was performed was trivial and fast, then the kernel returns

immediately to the interrupted process. Otherwise, sometime later (it might be much

later), after the operation is complete, the kernel executes its short-term scheduler

(dispatcher) to pick the next process to run.

Note that one side effect of an interrupt might be to terminate the currently running

process. In this case, of course, the current process will never be chosen to run next!

6. The state for the selected process is loaded into the registers and control is transferred

to the process using some type of "return from interrupt" instruction.

The System Call Path

One of the most important uses of interrupts, and one of the least obvious when you first

study about operating systems, is the system call. In your program, you might request a

UNIX system to read some data from a file with a call that looks like:
rv = read(0,buff,sizeof(buff));

Somewhere, deep down in the operating system kernel, is a function that implements this

read operation. For example, in Linux, the routine is called sys_read().

The path from the simple read() function call in your program to the sys_read() routine in

the kernel takes you through some interesting and crucial magic. The path goes from your

code to a system call stub function that contains a trap or interrupt instruction, to an interrupt

handler in the kernel, to the actual kernel function. The return path is similar, with the

addition of some important interactions with the process dispatcher.

System Call Stub Functions

The system call stub functions provide a high-level language interface to a function whose

main job is to generate the software interrupt (trap) needed to get the kernel's attention. These

functions are often called wrappers.

The stub functions on most operating systems do the same basic steps. While the details of

implementation differ, they include the following:

1. set up the parameters,

2. trap to the kernel,

3. check the return value when the kernel returns, and

4.

1. if no error: return immediately, else

2. if there is an error: set a global error number variable (called "errno") and

return a value of -1.

Below are annotated examples of this code from both the Linux (x86) and Solaris (SPARC)

version of the C library. As an exercise, for the Linux and Solaris versions of the code, divide

the code into the parts described above and label each part.

x86 Linux read (glibc 2.1.3)

read: push %ebx

 mov 0x10(%esp,1),%edx ; put the 3 parms in

registers

 mov 0xc(%esp,1),%ecx

 mov 0x8(%esp,1),%ebx

 mov $0x3,%eax ; 3 is the syscall # for

read

 int $0x80 ; trap to kernel

 pop %ebx

 cmp $0xfffff001,%eax ; check return value

 jae read_err

read_ret: ret ; return if OK.

read_err: push %ebx

 call read_next ; push PC on stack

read_next: pop %ebx ; pop PC off stack to %ebx

 xor %edx,%edx ; clear %edx

 add $0x49a9,%ebx ; the following is a bunch

of

 sub %eax,%edx ; ...messy stuff that sets

the

 push %edx ; ...value fo the errno

variable

 call 0x4000dfc0 <__errno_location>

 pop %ecx

 pop %ebx

 mov %ecx,(%eax)

 or $0xffffffff,%eax ; set return value to -1

 jmp read_ret ; return

SPARC Solaris 8

read: st %o0,[%sp+0x44] ! save argument 1 (fd) on

stack

read_retry: mov 3,%g1 ! 3 is the syscall # for read

 ta 8 ! trap to kernel

 bcc read_ret ! branch if no error

 cmp %o0,0x5b ! check for interrupt syscall

 be,a read_retry ! ... and restart if so

 ld [%sp+0x44],%o0 ! restore 1st param (fd)

 mov %o7,%g1 ! save return address

 call read_next ! set %o7 to PC

 sethi %hi(0x1d800), %o5 ! the following is a bunch of

read_next: or %o5, 0x10, %o5 ! ...messy stuff that sets the

 add %o5,%o7,%o5 ! ...value of the errno

variable

 mov %g1, %o7 ! ...by calling _cerror. also

the

 ld [%o5+0xe28],%o5 ! ...return value is set to -1

 jmp %o5

 nop

read_ret: retl

 nop

Interrupt Handling and the Interrupt Vector

When an interrupt occurs, the hardware takes over and forces a control transfer that looks

much like a function call. The destination of the control transfer depends on the type of

interrupt. Interrupt types include things such as divide by zero, memory errors, and software

interrupts (such as from the "int" instruction). The code that handles a particular type of

interrupt is called (cleverly enough) an interrupt handler. As control is transferred to the

appropriate interrupt handler, the process saves the PC and processor status on a special

kernel stack.

The operating system sets up a table, usually called the interrupt vector, that contains one

entry per type of interrupt. On the x86, this table is called the Interrupt Descriptor Table and

an entry in the table is called a gate. Each vector entry contains the address of the interrupt

handler for its interrupt.

In addition to branching and saving the PC and processor status, the processor will switch

from a state where only certain parts of memory can be accessed and where certain

instructions are prohibited (user mode) to a state where all operations are permitted (system

mode).

Saving State and Invoking the Kernel Function

Below is a slightly simplified version of the Linux code that is called to handle a system call

trap.

The first part of the code (starting at system_call) saves the registers of the user process and

plays around with the memory management registers so that the kernel's internal data is

accessible. It also finds the process table entry for this user process.

The trap instruction that caused the entry to the kernel has a parameter that specifies which

system call is being invoked. The code starting at do_call checks to see if this number is in

range, and then calls the function associated with this system call number. When this function

returns, the return value (stored in the eax register) is saved in the place where all the other

user registers are stored. As a result, when control is transferred from the kernel back to the

user process, the return value will be in the right place.

After the system call is complete, it is time to return to the user process. There are two

choices at this point: (1) either return directly the the user process that made the system call

or (2) go through the dispatcher to select the next process to run. ret_from_sys_call

system_call:

 #

 #----Save orig_eax: system call number

 # used to distinguish process that entered

 # kernel via syscall from one that entered

 # via some other interrupt

 #

 pushl %eax

 #

 #----Save the user's registers

 #

 pushl %es

 pushl %ds

 pushl %eax

 pushl %ebp

 pushl %edi

 pushl %esi

 pushl %edx

 pushl %ecx

 pushl %ebx

 #

 #----Set up the memory segment registers so that the kernel's

 # data segment can be accessed.

 #

 movl $(__KERNEL_DS),%edx

 movl %edx,%ds

 movl %edx,%es

 #

 #----Load pointer to task structure in EBX. The task structure

 # resides below the 8KB per-process kernel stack.

 #

 movl $-8192, %ebx

 andl %esp, %ebx

 #

 #----Check to see if system call number is a valid one, then

 # look-up the address of the kernel function that handles this

 # system call.

 #

do_call:

 cmpl $(NR_syscalls),%eax

 jae badsys

 call *SYMBOL_NAME(sys_call_table)(,%eax,4)

 # Put return value in EAX of saved user context

 movl %eax,EAX(%esp)

 #

 #----If we can return directly to the user, then do so, else go to

 # the dispatcher to select another process to run.

 #

ret_from_sys_call:

 cli # Block interrupts; iret effectively re-enables them

 cmpl $0,need_resched(%ebx)

 jne reschedule

 # restore user context (including data segments)

 popl %ebx

 popl %ecx

 popl %edx

 popl %esi

 popl %edi

 popl %ebp

 popl %eax

 popl %ds

 popl %es

 addl $4,%esp # ignore orig_eax

 iret

reschedule:

 call SYMBOL_NAME(schedule)

 jmp ret_from_sys_call

Copyright © 2002, 2008 Barton P. Miller

