
CS 537 Notes, Section #3A: Entering and 

Exiting the Kernel 

 

User and Kernel Addresse Spaces 

In a modern operating system, each user process runs in its own address space, and the kernel 

operates in its protected space. At the processor level (machine code level), the main 

distinction between the kernel and a user process is the ability to access certain resources 

such as executing privileged instructions, reading or writing special registers, and accessing 

certain memory locations.  

The separation of user process from user process insures that each processes will not disturb 

each other. The separation of user processes from the kernel insures that users processes will 

not be able to arbitrarily modify the kernel or jump into its code. It is important that processes 

cannot read the kernel's memory, and that it cannot directly call any function in the kernel. 

Allowing such operations to occur would invalidate any protection that the kernel wants to 

provide.  

Operating systems provide a mechanism for selectively calling certain functions in the kernel. 

These select functions are called kernel calls or system calls, and act as gateways into the 

kernel. These gateways are carefully designed to provide safe functionality. They carefully 

check their parameters and understand how to move data from a user process into the kernel 

and back again. We will discuss this topic in more detail in the Memory Management section 

of the course.  

 

The Path In and Out of the Kernel 

The only way to enter the operating kernel is to generate a processor interrupt. Note the 

emphasis on the word "only". These interrupts come from several sources:  

 I/O devices: When a device, such as a disk or network interface, completes its current 

operation, it notifies the operating system by generating a processor interrupt.  

 Clocks and timers: Processors have timers that can be periodic (interrupting on a 

fixed interval) or count-down (set to complete at some specific time in the future). 

Periodic timers are often used to trigger scheduling decisions. For either of these types 

of timers, an interrupt is generated to get the operating system's attention.  

 Exceptions: When an instruction performs an invalid operation, such as divide-by-

zero, invalid memory address, or floating point overflow, the processor can generate 

an interrupt.  

 Software Interrupts (Traps): Processors provide one or more instructions that will 

cause the processor to generate an interrupt. These instructions often have a small 

integer parameter. Trap instructions are most often used to implement system calls 

and to be inserted into a process by a debugger to stop the process at a breakpoint.  



The flow of control is as follows (and illustrated below):  

1. The general path goes from the executing user process to the interrupt handler. This 

step is like a forced function call, where the current PC and processor status are saved 

on a stack.  

2. The interrupt handler decides what type of interrupt was generated and calls the 

appropriate kernel function to handle the interrupt.  

3. The general run-time state of the process is saved (as on a context switch).  

4. The kernel performs the appropriate operation for the system call. This step is the 

"real" functionality; all the steps before and after this one are mechanisms to get here 

from the user call and back again.  

5. if the operation that was performed was trivial and fast, then the kernel returns 

immediately to the interrupted process. Otherwise, sometime later (it might be much 

later), after the operation is complete, the kernel executes its short-term scheduler 

(dispatcher) to pick the next process to run.  

Note that one side effect of an interrupt might be to terminate the currently running 

process. In this case, of course, the current process will never be chosen to run next!  

6. The state for the selected process is loaded into the registers and control is transferred 

to the process using some type of "return from interrupt" instruction.  



 

 

 

The System Call Path 

One of the most important uses of interrupts, and one of the least obvious when you first 

study about operating systems, is the system call. In your program, you might request a 

UNIX system to read some data from a file with a call that looks like:  
rv = read(0,buff,sizeof(buff));  

Somewhere, deep down in the operating system kernel, is a function that implements this 

read operation. For example, in Linux, the routine is called sys_read().  

The path from the simple read() function call in your program to the sys_read() routine in 

the kernel takes you through some interesting and crucial magic. The path goes from your 

code to a system call stub function that contains a trap or interrupt instruction, to an interrupt 

handler in the kernel, to the actual kernel function. The return path is similar, with the 

addition of some important interactions with the process dispatcher.  



 

 

 

System Call Stub Functions 

The system call stub functions provide a high-level language interface to a function whose 

main job is to generate the software interrupt (trap) needed to get the kernel's attention. These 

functions are often called wrappers.  

The stub functions on most operating systems do the same basic steps. While the details of 

implementation differ, they include the following:  

1. set up the parameters, 

2. trap to the kernel, 

3. check the return value when the kernel returns, and 

4.  

1. if no error: return immediately, else 

2. if there is an error: set a global error number variable (called "errno") and 

return a value of -1. 

Below are annotated examples of this code from both the Linux (x86) and Solaris (SPARC) 

version of the C library. As an exercise, for the Linux and Solaris versions of the code, divide 

the code into the parts described above and label each part.  

x86 Linux read (glibc 2.1.3)  

read:       push   %ebx 

            mov    0x10(%esp,1),%edx           ; put the 3 parms in 

registers 



            mov    0xc(%esp,1),%ecx 

            mov    0x8(%esp,1),%ebx 

            mov    $0x3,%eax                   ; 3 is the syscall # for 

read 

            int    $0x80                       ; trap to kernel 

            pop    %ebx 

            cmp    $0xfffff001,%eax            ; check return value 

            jae    read_err 

read_ret:   ret                                ; return if OK. 

read_err:   push   %ebx 

            call   read_next                   ; push PC on stack 

read_next:  pop    %ebx                        ; pop PC off stack to %ebx 

            xor    %edx,%edx                   ; clear %edx 

            add    $0x49a9,%ebx                ; the following is a bunch 

of 

            sub    %eax,%edx                   ; ...messy stuff that sets 

the 

            push   %edx                        ; ...value fo the errno 

variable 

            call   0x4000dfc0 <__errno_location> 

            pop    %ecx 

            pop    %ebx 

            mov    %ecx,(%eax) 

            or     $0xffffffff,%eax            ; set return value to -1 

            jmp    read_ret                    ; return 

SPARC Solaris 8  

read:       st     %o0,[%sp+0x44]            ! save argument 1 (fd) on 

stack 

read_retry: mov    3,%g1                     ! 3 is the syscall # for read 

            ta     8                         ! trap to kernel 

            bcc    read_ret                  ! branch if no error 

            cmp    %o0,0x5b                  ! check for interrupt syscall 

            be,a   read_retry                ! ... and restart if so 

            ld     [%sp+0x44],%o0            ! restore 1st param (fd) 

            mov    %o7,%g1                   ! save return address 

            call   read_next                 ! set %o7 to PC 

            sethi  %hi(0x1d800), %o5         ! the following is a bunch of 

read_next:  or     %o5, 0x10, %o5            ! ...messy stuff that sets the 

            add    %o5,%o7,%o5               ! ...value of the errno 

variable 

            mov    %g1, %o7                  ! ...by calling _cerror.  also 

the 

            ld     [%o5+0xe28],%o5           ! ...return value is set to -1 

            jmp    %o5 

            nop 

read_ret:   retl 

            nop 

 

Interrupt Handling and the Interrupt Vector 

When an interrupt occurs, the hardware takes over and forces a control transfer that looks 

much like a function call. The destination of the control transfer depends on the type of 

interrupt. Interrupt types include things such as divide by zero, memory errors, and software 

interrupts (such as from the "int" instruction). The code that handles a particular type of 

interrupt is called (cleverly enough) an interrupt handler. As control is transferred to the 



appropriate interrupt handler, the process saves the PC and processor status on a special 

kernel stack.  

The operating system sets up a table, usually called the interrupt vector, that contains one 

entry per type of interrupt. On the x86, this table is called the Interrupt Descriptor Table and 

an entry in the table is called a gate. Each vector entry contains the address of the interrupt 

handler for its interrupt.  

In addition to branching and saving the PC and processor status, the processor will switch 

from a state where only certain parts of memory can be accessed and where certain 

instructions are prohibited (user mode) to a state where all operations are permitted (system 

mode).  

 

Saving State and Invoking the Kernel Function 

Below is a slightly simplified version of the Linux code that is called to handle a system call 

trap.  

The first part of the code (starting at system_call) saves the registers of the user process and 

plays around with the memory management registers so that the kernel's internal data is 

accessible. It also finds the process table entry for this user process.  

The trap instruction that caused the entry to the kernel has a parameter that specifies which 

system call is being invoked. The code starting at do_call checks to see if this number is in 

range, and then calls the function associated with this system call number. When this function 

returns, the return value (stored in the eax register) is saved in the place where all the other 

user registers are stored. As a result, when control is transferred from the kernel back to the 

user process, the return value will be in the right place.  

After the system call is complete, it is time to return to the user process. There are two 

choices at this point: (1) either return directly the the user process that made the system call 

or (2) go through the dispatcher to select the next process to run. ret_from_sys_call  

system_call: 

        # 

        #----Save orig_eax: system call number 

        #    used to distinguish process that entered 

        #    kernel via syscall from one that entered 

        #    via some other interrupt 

        # 

        pushl %eax 

 

        #  

        #----Save the user's registers 

        #  

        pushl %es 

        pushl %ds 

        pushl %eax 

        pushl %ebp 

        pushl %edi 

        pushl %esi 



        pushl %edx 

        pushl %ecx 

        pushl %ebx 

 

        #  

        #----Set up the memory segment registers so that the kernel's 

        #    data segment can be accessed. 

        #  

        movl $(__KERNEL_DS),%edx 

        movl %edx,%ds 

        movl %edx,%es 

 

        #  

        #----Load pointer to task structure in EBX. The task structure 

 #    resides below the 8KB per-process kernel stack. 

        #  

        movl $-8192, %ebx 

        andl %esp, %ebx 

 

        #  

        #----Check to see if system call number is a valid one, then 

        #    look-up the address of the kernel function that handles this 

        #    system call. 

        #  

do_call: 

        cmpl $(NR_syscalls),%eax 

        jae badsys 

        call *SYMBOL_NAME(sys_call_table)(,%eax,4) 

 

 # Put return value in EAX of saved user context 

        movl %eax,EAX(%esp) 

 

        #  

        #----If we can return directly to the user, then do so, else go to 

        #    the dispatcher to select another process to run. 

        #  

ret_from_sys_call: 

        cli        # Block interrupts; iret effectively re-enables them 

        cmpl $0,need_resched(%ebx) 

        jne reschedule 

 

        # restore user context (including data segments) 

        popl %ebx 

        popl %ecx 

        popl %edx 

        popl %esi 

        popl %edi 

        popl %ebp 

        popl %eax 

        popl %ds 

        popl %es 

        addl $4,%esp                   # ignore orig_eax 

        iret 

 

reschedule: 

        call SYMBOL_NAME(schedule) 

        jmp ret_from_sys_call 
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